If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x^2+65x-9=0
a = -7; b = 65; c = -9;
Δ = b2-4ac
Δ = 652-4·(-7)·(-9)
Δ = 3973
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-\sqrt{3973}}{2*-7}=\frac{-65-\sqrt{3973}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+\sqrt{3973}}{2*-7}=\frac{-65+\sqrt{3973}}{-14} $
| 7v+6=4v+3 | | 14-13x=12x^2 | | 16^2+120x=0 | | 13x=4x | | 6w-1=11w+1 | | 32-2x^2+8x=0 | | 11.68x-5=−5 | | 11.68x−5=−5 | | 108=121.5-1.5u^2 | | 4x+21=35 | | 36=36/2a | | 14k=2 | | 28k=1 | | X(p)=17-0.35p | | 2x-1=-7x-10 | | 7x-5=5x-3 | | 0.35=0.7y | | 4x7+3-4=27 | | 13-(-2x+5)=5 | | 3 4(1 6x+16)=3 7(43 8x−21) | | V(x)=(4-2x)(2-2x)x | | x(10-x)=10x+10-x | | V(x)=x(8^2-2x8x2x+(8x)^2) | | (z+3)(z+2)=z+3z+20 | | 2y+15=3(y-4) | | 3(2x-4)=5x–(12-x) | | 2y+15=3y-12 | | 10−9x2+4x=−6x^2 | | R+c=90 | | 21=u/3-9 | | 2x-4(x-5)=-6+4x | | 5X-2(x-5)=8+5x+2 |